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Pre-requisite for this chapter

* Loss function, backpropagation
* CNN
* RNN (LSTM/GRU)



Recall: Language Modeling

Language Modeling is the task of predicting what word comes next

cheese

P(cheese | | like pizza with loads of)

| like pizza with loads of

> corn
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I T P(corn | | like pizza with loads of)
Previous words in the sentence \word to be
predicted
tree

P(tree | | like pizza with loads of)
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Recall: Language Modeling

* You can also think of a Language Model as a system that assigns a probability to a
piece of text.

* Forexample, if we have some text x(l), - x () , then the probability of this text
(according to the Language Model) is:

P, ... ") = PlaW) x P(®?| W) x - x P(xD)] ™D .. W)

T
= [[P®)] 2D, ..., 20)

t=1 \_ J
Y

This is what our LM provides
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How to Build a Neural Language Model?

* Recall the Language Modeling task:

* Input: sequence of words x(1, x(®), ... x®

» Output: probability distribution of the next word P(xD|x®, . (1)
* How about a window-based neural model?
Example: NER Task LOCATION
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museums in Paris are amazing
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A Fixed-window Neural Language Model
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A Fixed-window Neural Language Model

books
laptops
output distribution
y = softmax(Uh + by) € RIV!
a T Z00
hidden layer v
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concatenated word embeddings [.... 0000 0000 ....]
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A Fixed-window Neural Language Model
Approximately: Y.Bengio, et al.

books _—
_ . laptons (2000/2003): A Neural Probabilistic
Improvements over n-gram LM: ptop | angage Model

* No sparsity problem
e Don’tneed to store all observed n-

grams p = = We need a neural
U architecture that can
[............] process any length
Remaining problems: T _
* Fixedwindow is too small w input
* Enlarging window enlarges W [.... 0000 0000 ....]
« x(Mand x? are multiplied by
completely different weights in W T T ] ]

No symmetry in how the inputs are :
y y P the students opened their

processed. (1) 2 (2) 2(3) 24

@% LLMs: Introduction and Recent Advances ; VETITALER) e G B



https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Recurrent Neural Networks (RNN)

outputs - (1)
(optional) { Y

Core idea: Apply the same
weights W repeatedly

hidden states <

input sequence 1
(any length) { (V)
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A Simple RNN Language Model

output distribution

g = softmax (Uh(t) + b2> e RV

g4 = P(x(®)|the students opened their)
books

laptops

LA

h(0) h(1)
. Q@
hidden states
| W,
h®) — & (Whh(t_l) + Wee® + bl) @ g
Q@
R s the initial hidden state —

word embeddings

e — Ep®

words / one-hot vectors h
(t) ¢ RIVI the
'\ e R 2(1)

Note: this input sequence could be much longer now!
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g4 = P(x(®)|the students opened their)
books

laptops

RNN Language Models

RNN Advantages:

* Canprocess any length input

e Computation for step t can (in h©)
theory) use information from many steps @
back ©

@

* Modelsize doesn’tincrease for longer input (0]

context —

* Same weights applied on every

timestep, so there is symmetry in how inputs
are processed.

RNN Disadvantages:

* Recurrent computation is slow

* |n practice, difficult to access information
from many steps back

the  students opened their
2D 2(2) 2(3) 2@
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Training an RNN Language Model



Training an RNN Language Model

Get a big corpus of text which is a sequence of words x(D, x(2), .. x(™

Feed into RNN-LM; compute output distribution 57(’:) for every step t.

* i.e., predict probability distribution of every word, given words so far

Loss function on step tis cross-entropy between predicted probability distribution y<t> , and the true next
word y® (one-hot for x ¢+ D):

J (@) = CEYy®, M) = Z ylog ) = —log gt

weV e
* Average this to get overall loss for entire training set:
] — 1 —
=22 IO = 5 Y ~loggl),,
t=1 t=1
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= negative log prob
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Loss == J(1)() J2)(6) J3)(6) J(0)
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= negative log prob
of “their”

Loss == J(1)() J2)(6) J3)(6) J(0)
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= negative log prob
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Training a RNN Language Model

 However: Computing loss and gradients across entire corpus x(D, x| .., x(T) at once is
too expensive (memory-wise)!

J(60) = % S0 )

* |n practice, consider x(l), x(z), . xT) as a sentence (or a document)

* Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

* Compute loss J(8) for a sentence (actually, a batch of sentences), compute
gradients and update weights. Repeat on a new batch of sentences.
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Backpropagation for RNNs

J® (6)

o R
@ @ @ O @
@ W, Wi l@| WL |le| Wh |l@| Wh |@| W,
ERAASLEN — 7y > > > >
@ @ (@) (@) ()
o o |8 8 o

Question: What'’s the derivative of () () wirtthe repeated weight matrix W, ?

“The gradient w.rt. a repeated weight is
the sum of the gradient
w.rt. each time it appears”

Why?

o.J(®) t g
oWy~ W,

Answer:

(%)

1
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« Given a multivariable function f(z,¥), and two single variable functions
:B(t) and y(t), here's what the multivariable chain rule says:

Multivariable Chain Rule 5 a3 D

d

Derivative of composition function

One final output f(x(¢), y(t))

/ '\ Gradients sum at outward branches

Two intermediate
outputs X (t) y (t)
+

avine
One input \t / <>:

a=x+Yy
b=max(y,z) Of 8f3a+ﬁ@
f=uab dy 0Oady 0Obdy

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-
simple-version
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Training The Parameters of RNNSs:
Backpropagation for RNNs



o0J®)
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Question: How do we calculate this?

Answer: Backpropagate over timesteps
I=t,...,0, summing gradients as you go.
This algorithm is called “backpropagation
through time”

[Werbos, PG., 1988, Neural Networks 1, and others]

\ 4

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Apply the multivariable chain rule:

oJ® v
oW, &

=1

0J® | |OWal,
oJ®)
OWh |
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