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Pre-requisite for this chapter

• Loss function, backpropagation
• CNN
• RNN (LSTM/GRU)
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Recall: Language Modeling
• Language Modeling is the task of predicting what word comes next

I like pizza with loads of  ______.

cheese

P(cheese | I like pizza with loads of) 

tree

P(tree | I like pizza with loads of) 

corn

P(corn | I like pizza with loads of) 
Previous words in the sentence Word to be 

predicted

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Recall: Language Modeling
• You can also think of a Language Model as a system that assigns a probability to a 

piece of text.

• For example, if we have some text 𝑥(1), … , 𝑥(𝑇) , then the probability of this text 
(according to the Language Model) is:

This is what our LM provides

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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How to Build a Neural Language Model?
• Recall the Language Modeling task:

• Input: sequence of words 𝒙(𝟏), 𝒙(𝟐), … , 𝒙(𝒕)

• Output: probability distribution of the next word 𝑷 𝒙 𝒕+𝟏 𝒙 𝒕 , … , 𝒙 𝟏

• How about a window-based neural model?
Example: NER Task

in Paris are amazingmuseums

LOCATION

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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A Fixed-window Neural Language Model

their as the proctor started the clock
discard

the students opened

fixed window

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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A Fixed-window Neural Language Model

concatenated word embeddings

words / one-hot vectors

hidden layer

output distribution

books
laptops

a zoo

their as the proctor started the clock
discard

the students opened

fixed window

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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A Fixed-window Neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-

grams We need a neural 
architecture that can 
process any length

input

Approximately: Y.Bengio, et al.
(2000/2003): A Neural Probabilistic

Language Model

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• 𝑥(1) and 𝑥(2) are multiplied by 

completely different weights in 𝑊. 
No symmetry in how the inputs are 
processed.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Recurrent Neural Networks (RNN)

hidden states

input sequence 
(any length)

outputs  
(optional)

Core idea: Apply the same 
weights𝑊 repeatedly

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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A Simple RNN Language Model

words / one-hot vectors

word embeddings

the students opened their

books
laptops

a zoooutput distribution

Note: this input sequence could be much longer now!

hidden states

 is the initial hidden state

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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RNN Language Models

the students opened their

books
laptops

a zooRNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from many steps 
back

• Model size doesn’t increase for longer input 
context

• Same weights applied on every
timestep, so there is symmetry in how inputs 
are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access information 

from many steps back

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Training an RNN Language Model
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Training an RNN Language Model
• Get a big corpus of text which is a sequence of words 𝑥(1), 𝑥(2), … , 𝑥(𝑇)

• Feed into RNN-LM; compute output distribution ො𝑦(𝑡) for every step t.
• i.e., predict probability distribution of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability distribution ො𝑦(𝑡) , and the true next 
word 𝑦(𝑡) (one-hot for 𝑥(𝑡+1)):

• Average this to get overall loss for entire training set:

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


…

Corpus the students opened their exams …

Loss

Predicted  probability 
distributions

= negative log prob  
of “students”



Corpus the students opened their exams

Loss

Predicted  probability 
distributions

= negative log prob  
of “opened”

…

…



Corpus the students opened their exams

Loss

Predicted  probability 
distributions

= negative log prob  
of “their”

…

…



Corpus the students opened their exams

Loss

Predicted  probability 
distributions

= negative log prob  
of “exams”

…

…



Corpus the students opened their exams

Loss

Predicted  probability 
distributions

…

…

“Teacher forcing”

+ + + + … =
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Training a RNN Language Model
• However: Computing loss and gradients across entire corpus 𝑥(1), 𝑥(2), … , 𝑥(𝑇) at once is 

too expensive (memory-wise)!

• In practice, consider 𝑥(1), 𝑥(2), … , 𝑥(𝑇) as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small 
chunk of data, and update.

• Compute loss 𝐽(𝜃) for a sentence (actually, a batch of sentences), compute         
gradients and update weights. Repeat on a new batch of sentences.

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Backpropagation for RNNs

……

Question: What’s the derivative of 𝐽 𝑡 (𝜃) w.r.t the repeated weight matrix 𝑊ℎ ?

Answer:

“The gradient w.r.t. a repeated weight is
the sum of the gradient

w.r.t. each time it appears”

Why?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
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Multivariable Chain Rule

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-
simple-version

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Training The Parameters of RNNs: 
Backpropagation for RNNs



Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go. 
This algorithm is called “backpropagation 
through time”

[Werbos, P.G., 1988, Neural Networks 1, and others]

Apply the multivariable chain rule:
= 1

……
In practice, often 
“truncated” after ~20 
timesteps for training 
efficiency reasons
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