Neural Language Models

Tanmoy Chakraborty
Associate Professor, lIT Delhi
https://tanmoychak.com/

Slides are adopted from the Stanford course ‘NLP with DL’ by C. Manning

https://tanmoychak.com/

Grok 3 is xAl's latest Al
chatbot, offering advanced
capabilities, trained on
200,000 GPUs, and available
to X Premium+ subscribers.

X premium+: Enhanced
subscription plan with features
like post editing, ad-free
experience, and monetization
tools.

Grok 3 and X Premium+ Update

)\/' XAl

INTRODUCING
P4 crok 3

% 1'

"‘ -3
"y

Released on
February 19,
2025

Grok 3

Advanced Al Capabilities:
Access to Grok 3 for
enhanced Al interactions.
Enhanced User
Experience: Ad-free
browsing, post editing, and
longer content sharing.
Monetization
Opportunities: Tools like
Get Paid to Post and
Creator Subscriptions.

https://medium.com/ai-agent-insider/grok-3-the-most-advanced-ai-chatbot-by-x-ai-d0324312d6f7

¥ Chapter 05. Neural Language Models
» 5.1 Convolutional Neural Networks
» 5.2 Recurrent Neural Networks
» 5.3 Sequence-to-Sequence Models

» 5.4 Attention Mechanisms
5.5 Limitations of Neural Language Models

5.6 Summary

INTRODUCTION TO

LARGE LANGUAGE
MODELS

Generative Al for Text

Tanmoy Chakraborty

Pre-requisite for this chapter

* Loss function, backpropagation
* CNN
* RNN (LSTM/GRU)

Recall: Language Modeling

Language Modeling is the task of predicting what word comes next

cheese

P(cheese | | like pizza with loads of)

| like pizza with loads of

> corn
\ J . . .
I T P(corn | | like pizza with loads of)
Previous words in the sentence \word to be
predicted
tree

P(tree | | like pizza with loads of)

f@% LLMs: Introduction and Recent Advances

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Recall: Language Modeling

* You can also think of a Language Model as a system that assigns a probability to a
piece of text.

* Forexample, if we have some text x(l), - x () , then the probability of this text
(according to the Language Model) is:

P, ... ") = PlaW) x P(®?| W) x - x P(xD)] ™D .. W)

T
= [[P®)] 2D, ..., 20)

t=1 _ J
Y

This is what our LM provides

LLMs: Introduction and Recent Advances

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

How to Build a Neural Language Model?

* Recall the Language Modeling task:

* Input: sequence of words x(1, x(®), ... x®

» Output: probability distribution of the next word P(xD|x®, . (1)
* How about a window-based neural model?
Example: NER Task LOCATION

K%

[ooooog’ooooo}
%4
(0000 0000 0000 0000 0000 |

I ! f f f

museums in Paris are amazing

@% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

A Fixed-window Neural Language Model

S — e —— e T O TS T et ek {he students opened theig

di d v
sear fixed window

@?% LLMs: Introduction and Recent Advances I Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

A Fixed-window Neural Language Model

books
laptops
output distribution
y = softmax(Uh + by) € RIV!
a T Z00
hidden layer v
h— f(We+b) (000000000000)]
1
w
concatenated word embeddings [.... 0000 0000]
e = [e(l); 6(2); 6(3); 6(4)]
words / one-hot vectors T T] T
By @y O RO
" S—— G — O Ol OO G e PO OK {he students opened theig .
discard v

fixed window

t@% LLMs: Introduction and Recent Advances \ : Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

A Fixed-window Neural Language Model
Approximately: Y.Bengio, et al.

books _—
_ . laptons (2000/2003): A Neural Probabilistic
Improvements over n-gram LM: ptop | angage Model

* No sparsity problem
e Don’tneed to store all observed n-

grams p = = We need a neural
U architecture that can
[............] process any length
Remaining problems: T _
* Fixedwindow is too small w input
* Enlarging window enlarges W [.... 0000 0000]
« x(Mand x? are multiplied by
completely different weights in W T T]]

No symmetry in how the inputs are :
y y P the students opened their

processed. (1) 2 (2) 2(3) 24

@% LLMs: Introduction and Recent Advances ; VETITALER) e G B

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Recurrent Neural Networks (RNN)

outputs - (1)
(optional) { Y

Core idea: Apply the same
weights W repeatedly

hidden states <

input sequence 1
(any length) { (V)

f23) LLMs: Introduction and Recent Advances CO& Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

A Simple RNN Language Model

output distribution

g = softmax (Uh(t) + b2> e RV

g4 = P(x(®)|the students opened their)
books

laptops

LA

h(0) h(1)
. Q@
hidden states
| W,
h®) — & (Whh(t_l) + Wee® + bl) @ g
Q@
R s the initial hidden state —

word embeddings

e — Ep®

words / one-hot vectors h
(t) ¢ RIVI the
'\ e R 2(1)

Note: this input sequence could be much longer now!

f@% LLMs: Introduction and Recent Advances

students

opened their

2(3) 2

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

g4 = P(x(®)|the students opened their)
books

laptops

RNN Language Models

RNN Advantages:

* Canprocess any length input

e Computation for step t can (in h©)
theory) use information from many steps @
back ©

@

* Modelsize doesn’tincrease for longer input (0]

context —

* Same weights applied on every

timestep, so there is symmetry in how inputs
are processed.

RNN Disadvantages:

* Recurrent computation is slow

* |n practice, difficult to access information
from many steps back

the students opened their
2D 2(2) 2(3) 2@

@% LLMs: Introduction and Recent Advances : i Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Training an RNN Language Model

Training an RNN Language Model

Get a big corpus of text which is a sequence of words x(D, x(2), .. x(™

Feed into RNN-LM; compute output distribution 57(’:) for every step t.

* i.e., predict probability distribution of every word, given words so far

Loss function on step tis cross-entropy between predicted probability distribution y<t> , and the true next
word y® (one-hot for x ¢+ D):

J (@) = CEYy®, M) = Z ylog) = —log gt

weV e
* Average this to get overall loss for entire training set:
] — 1 —
=22 IO = 5 Y ~loggl),,
t=1 t=1

LLMs: Introduction and Recent Advances LG Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

= negative log prob
of “students”

Loss == | J(1)(§) J2)(6) J3)(6) J(0)

T

Predlcted.prgbaplllty > g e e e
distributions
U U U U
h©)__ h h(2) h3) h(4)
© ® O @) @)
@ W, |0 W, |@| Wi |0 Wr |0@| Wi
© © | @ 1K @ g
©® © O @) O
R e . N
We W, W, W,

o)

o o
2)| © 3) © (4)
el e e”l'e e
@ @

{0000
1
1
{eve0

Corpus =—> the students opened their exams
(1) 7 (2) 2 (3) (%)

= negative log prob
of “opened”

Loss == J(1)() J2)(6) J3)(6) J(0)

[

Predlcted.prgbaplllty > g e e e
distributions
U U U U
h©)__ h h(2) h3) h(4)
© ® O @) @)
@ W, |0 W, |@| Wi |0 Wr |0@| Wi
© © | @ 1K @ g
©® © O @) O
R e . N
We W, W, W,

o)

o o
2)| © 3) © (4)
el e e”l'e e
@ @

{0000
1
1
{eve0

Corpus =—> the students opened their exams
(1) 7 (2) 2 (3) (%)

= negative log prob
of “their”

Loss == J(1)() J2)(6) J3)(6) J(0)

I I

Predlcted.prgbaplllty > g e e e
distributions
U U U U
h©)__ h h(2) h3) h(4)
© ® O @) @)
@ W, |0 W, |@| Wi |0 Wr |0@| Wi
© © | @ 1K @ g
©® © O @) O
R e . N
We W, W, W,

o)

o o
2)| © 3) © (4)
el e e”l'e e
@ @

{0000
1
1
{eve0

Corpus =—> the students opened their exams
(1) 7 (2) 2 (3) (%)

= negative log prob

of “exams”
Loss =—— J()(9) J2) () J3 () JD(9)
Predlcted.prc?bat?lllty_, e el g3 g4
distributions
U U U U
h©)__ h h(2) h3) h(4)
@ @ @ e @
(W, |0 Wi |@|Wr |@| Wr |0 W) _
® ® 1@ 1@ 1@ .
e ;. @ @ @
I T N N N
W, W, W, W,
(1) 2)| © 3) © 4| ©
€’le| “le| ° le| ° o
@) @) @) @)
Te Tz T& o
Corpus =— the students opened their
ey e (3 2@

exams

| “Teacherforcinng

T
Loss =———> JW(9) + JD(@O) + JO@O) + JDO) +.. = J<e)=%ZJ<t><e>
R N
Predlcted.prgbaplllty > g e e e
distributions
U U U U
h©)__ h h(2) h3) h(4)
© ® O @) @)
@ W, |0 W, |@| Wi |0 Wr |0@| Wi
© ® @ @ 1@ g
©® © O @) O
R e . N
We W, We. We.

o)

o o
2)| © 3) © (4)
el e e”l'e e
@ @

{0000
1
L
{eve0

Corpus =—> the students opened their exams
(1) 7 (2) 2 (3) (%)

Training a RNN Language Model

 However: Computing loss and gradients across entire corpus x(D, x| .., x(T) at once is
too expensive (memory-wise)!

J(60) = % S0)

* |n practice, consider x(l), x(z), . xT) as a sentence (or a document)

* Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

* Compute loss J(8) for a sentence (actually, a batch of sentences), compute
gradients and update weights. Repeat on a new batch of sentences.

LLMs: Introduction and Recent Advances Y o Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Backpropagation for RNNs

J® (6)

o R
@ @ @ O @
@ W, Wi l@| WL |le| Wh |l@| Wh |@| W,
ERAASLEN — 7y > > > >
@ @ (@) (@) ()
o o |8 8 o

Question: What'’s the derivative of () () wirtthe repeated weight matrix W, ?

“The gradient w.rt. a repeated weight is
the sum of the gradient
w.rt. each time it appears”

Why?

o.J(®) t g
oWy~ W,

Answer:

(%)

1

@?% LLMs: Introduction and Recent Advances ; VETITALER) e G B

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

« Given a multivariable function f(z,¥), and two single variable functions
:B(t) and y(t), here's what the multivariable chain rule says:

Multivariable Chain Rule 5 a3 D

d

Derivative of composition function

One final output f(x(¢), y(t))

/ '\ Gradients sum at outward branches

Two intermediate
outputs X (t) y (t)
+

avine
One input \t / <>:

a=x+Yy
b=max(y,z) Of 8f3a+ﬁ@
f=uab dy 0Oady 0Obdy

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-
derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-
simple-version

f@% LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
http://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Training The Parameters of RNNSs:
Backpropagation for RNNs

o0J®)
oWy, |

Question: How do we calculate this?

Answer: Backpropagate over timesteps
I=t,...,0, summing gradients as you go.
This algorithm is called “backpropagation
through time”

[Werbos, PG., 1988, Neural Networks 1, and others]

\ 4

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Apply the multivariable chain rule:

oJ® v
oW, &

=1

0J® | |OWal,
oJ®)
OWh |

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4: Pre-requisite for this chapter
	Slide 5: Recall: Language Modeling
	Slide 6: Recall: Language Modeling
	Slide 7: How to Build a Neural Language Model?
	Slide 8: A Fixed-window Neural Language Model
	Slide 9: A Fixed-window Neural Language Model
	Slide 10: A Fixed-window Neural Language Model
	Slide 11: Recurrent Neural Networks (RNN)
	Slide 12: A Simple RNN Language Model
	Slide 13: RNN Language Models
	Slide 14: Training an RNN Language Model
	Slide 15: Training an RNN Language Model
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Training a RNN Language Model
	Slide 22: Backpropagation for RNNs
	Slide 23: Multivariable Chain Rule
	Slide 24: Training The Parameters of RNNs: Backpropagation for RNNs
	Slide 25

